当前位置: 首页 > 新能源汽车 > 技术标准 > 正文

探究动力锂电池系统安全性问题之扩展

放大字体 缩小字体 发布日期:2017-01-10 10:31:34   来源:新能源汽车网  编辑:全球新能源汽车网  浏览次数:529


blob.png

壳体导热与极柱导热的两条路径主要作用于相邻电池之间,容易分析与控制。

对于方形电池而言,在壳体与壳体之间接触良好的情况下,通过壳体的导热要远大于极柱的导热。而对于圆柱形电池模块而言,如图7(b)所示,单体与单体之间的传热还可能需要考虑热辐射的影响。

而起火炙烤既可以作用于相邻电池,也可以作用于周围的电池系统附件,评估其对于电池系统造成的危害会更加复杂与困难。有研究表明,电池起火燃烧放出的热量要高于不起火时单纯热失控放出的热量。发生起火后,火焰一般附着在热失控电池阀体周围。同时,由于火焰的外焰温度最高,因此阀体开启方向上的电池及附件受到的加热最为剧烈。

另外,从设计角度看,电池系统本身具有一定的密闭性,热失控产生的高温气体来不及扩散,也可能会加热周围的电池。

防范热失控扩展与电池系统设计的矛盾

根据热失控扩展的机理,可以有针对性地设计防范热失控扩展的方案。

首先,需要防止火焰的发生。可以通过阀体喷射方向的设计,来引导火焰的生成方向;也可以加入灭火剂来进行灭火。当然,动力电池系统通过了安全性测试标准,火焰发生的概率已经得到降低;同时,动力电池系统密封性良好使电池系统内部氧气含量不足,也不利于火焰的生成与发展。

其次,要考虑高温气体扩散对电池系统其他部件的影响。部分电池已经具有能够及时排出高温气体的系统。

同时,要适当阻隔电池之间的传热路径,如在单体电池之间设置隔热层。需要注意的是,在热管理中,电池壳体间可能预留有空气空隙以供风冷,并将相邻电池隔开。但是在热失控扩展过程中,热失控电池膨胀,空气空隙将因为电池的膨胀而消失。此时,电池与电池之间的传热仍然是快速导热,用单纯预留空气空隙的方法防范热失控扩展是行不通的。

另外,可以通过在单体热失控触发之后,增强电池系统内部的散热;将故障电池周围的电池进行放电;在电池之间填充相变材料吸收热量等方法来抑制热失控的扩展。

然而,防范热失控扩展的设计与电池系统的其他功能设计存在一定的矛盾。阻隔传热路径的方法可能造成电池组内部温度不均匀程度的加剧,这与电池组热管理设计中,温度一致性的设计目标相矛盾。另外,增加灭火、排气、隔热等措施,均会降低电池系统比能量,增加电池系统的设计成本。

如何合理地配置安全性措施,以防范热失控扩展的发生,同时考虑电池系统性能指标和设计成本,是电池系统安全性设计的重要议题之一。

动力电池系统安全性问题主要分为3个层次,即“演变”、“触发”与“扩展”。动力电池安全性事故发生之前,应通过系统算法对安全事故进行预警。热失控触发发生后,应防止热失控扩展的发生。热失控扩展过程机理的进一步认识有助于优化设计方案,降低安全性事故造成的损害。进一步深入研究安全性问题各个层次的机理及其演变过程,提出有效的事故防范措施和安全性监控措施,是下一步研究的工作重点。

 
关键词: 失控 电池 扩展


 
猜你喜欢
0条 [查看全部]  相关评论
 
推荐图文
【安全】燃气汽车加气站建设的安全要求 铅酸蓄电池智能充电器原理与维修方法
新型电动汽车锂电池管理系统的设计方案 如何看汽车电池热管理系统
推荐新能源汽车
热门排行
 
网站首页 | 关于我们 | 联系方式 | 使用协议 | 版权隐私 | 排名推广 | 广告服务 | 积分换礼 | 网站留言