当前位置: 首页 > 环保节能 > 环保节能 > 正文

高浓度有机废水主要处理技术 看这篇汇总就够了!

放大字体 缩小字体 发布日期:2019-09-19 09:07:36   浏览次数:229


厌氧生物处理法

早在一百多年前,人们就开始采用厌氧工艺处理生活污水污泥。1860年,法国工程师Mouras首次采用厌氧方法处理沉淀池的固定物质,后来德国的Karl Imhoff将其发展为目前仍然在使用的腐化池和双层沉淀池(又称Imhoff池) 。

在1910年~1950年间,高效的、可加温和搅拌的污泥消化池得到了进一步地发展,如厌氧接触工艺,这些反应器被称为第一代厌氧反应器。由于第一代厌氧反应器无法将污泥停留时间和水力停留时间分开,污泥中温消化池的HRT长达20 d~30 d ,这就大大增加了消化池的容积和占地面积,提高了建设费用。为了提高厌氧反应系统的处理效率,人们成功地研究和开发了第二代厌氧反应器,例如厌氧滤池(AF)、升流式厌氧污泥床反应器(UASB)、厌氧流化床(AFB)和厌氧接触膜膨胀床反应器(AAFEB)等。它们共同的特点就是可以将固体停留时间和水力停留时间相分离,这使得反应器内固体停留时间可以长达上百天,而水力停留时间可以从过去的几十天缩短为几天,甚至几小时。在已经开发的这些高效厌氧处理系统中,UASB已广泛用于实际生产中。

AF是美国斯坦福大学的两位学者首先研制的。装置中填满了砂砾、卵石、塑料或纤维等,厌氧微生物附着在填料的巨大表面上,可维持较高的生物量和较少的SRT。一般采用上流式,在中温条件下也可采用下流式。

4.jpg

UASB即上流式厌氧污泥床,是荷兰农业大学几名教授在AF基础上发展起来的,其特点是反应器的上部设置1个气、固、液三相分离器,混合液中的污泥能自动回到反应区以维持较多的生物量和较长的SRT,整个反应器由反应区和沉淀区两部分组成。UASB具有很高的容积负荷率和污泥负荷率。

工作原理:废水中的有机污染物在厌氧条件下经微生物降解,转化成甲烷、二氧化碳等,所产气体(沼气)含甲烷大于60% ,可作为能源再次利用,如用于锅炉燃烧、发电等。这样,既去除了有机污染物又回收了能源。上流式厌氧污泥床反应器主体是内装颗粒厌氧污泥的容器,在其上部设置专用的气、液、固分离系统(即三相分离器) ,它可使反应器中保持较高活性及良好沉淀性能的厌氧微生物,工艺上较一般厌氧装置的效率更高,同时还节省了投资与占地面积。其技术关键为三相分离器、布水系统及工艺条件,特别是形成颗粒污泥的工艺条件是UASB装置发挥高效的技术关键。

5.jpg

使用UASB处理高浓度污废水,UASB的容积负荷可高达10 kg/ m3·d~50 kg/ m3·d (好氧最高为5 kg/m3·d~10 kg/ m3·d) ,HRT可缩短为10 h~12 h ,这与污泥床中保留有大量厌氧颗粒污泥是分不开的。厌氧颗粒污泥大多呈卵“,”形,直径015 mm~5 mm ,具有良好的沉降性和生物活性. UASB反应器中颗粒污泥的形成往往需要几个月的时间,但向反应器中加入惰性载体、颗粒活性碳,及向碳水中加入甲醇都可以缩短颗粒的形成时间。三相分离器分离效果的好坏也是决定UASB成功的关键。同时,人们在使用厌氧工艺过程中开发了水解(酸化)工艺。

水解酸化的目的是把废水中的不溶物转变为可溶物,将微生物难降解物质转变为生物易降解物质。研究证实,厌氧消化过程中的水解酸化段,不但能降低CODcr ,而且还可以提高废水的可生化性,利用这一特点,人们设计并开发了多种类型的水解酸化反应器,在生活废水、印染废水、食品废水、化工废水等治理工作中发挥了重要作用,获得了满意的效果。

虽然第二代厌氧处理工艺在应用中取得了很大成功,但在进一步扩大其应用范围时,仍然遇到了不少问题,迫使人们在此基础上继续进行研究和开发,这样相继开发了第三代和新型厌氧反应器。主要包括膨胀颗粒污泥床( EGSB)、厌氧内循环反应器( IC)、厌氧折流板反应器(ABR)等。

A-B工艺

A-B工艺即吸附—生物降解技术。70年代德国亚深工业大学的Boehnke教授提出了吸附—生物降解工艺。由A段和B段组成,2段串联运行,不设初沉池,污水经预处理后,直接进入A段曝气池,A段曝气池排出的混合液在中间沉淀池进行泥水分离,A段曝气池、中间沉淀池及其回流和排泥组成A段处理系统。中间沉淀池出水进入B段曝气池继续进行处理,B段曝气池混合液排入二沉池进行泥水分离,B段曝气池、二沉池及其回流和排泥组成B段处理系统。工艺流程如图:

6.jpg

A-B工艺中的A段为高负荷(通常BOD5的负荷>2.0kgBOD5/kgMLSS·d)的生物吸附段,利用活性污泥的吸附、絮凝作用将污水中的有机物吸附于活性污泥上对其进行降解,A段产生的大量污泥在中间沉淀池进行泥水分离,停留时间30~60min。A段的微生物绝大部分是细菌(大肠杆菌群) ,其世代时间短(约为20 min) ,繁殖速度快。A段可通过控制溶解氧含量,以好氧或兼氧方式运行,耗氧量负荷,污泥产率较高,沉降性能较好,污水经A段处理后可生化性有可能提高。B段以低负荷(BOD5的负<0.1-0.3kg BOD5/kgMLSS·d)运行,停留时间2~4h,B段的微生物中原生动物和后生动物占较大的比例。

A-B工艺的特点有:

(1) A-B工艺具有高效去除有机物的能力,BOD5的去除率可达95 % ,CODCr的去除率可高达90 %。

(2) A-B工艺具有较强的出水稳定性。A段对进水有机物的负荷、有毒物质和极端pH的冲击具有较强的缓冲能力,使大部分冲击被A段所截留,从而为B段提供了良好的微生物生存环境,保证了总出水水质的稳定性。

(3)A段以兼氧运行时,可提高污水的可生化性,从而使A-B工艺在处理难生物降解物质方面具有较高的去除率。

(4) A-B工艺污泥沉降性能好,易于克服污泥膨胀。

(5)B段污泥负荷较低,污泥龄较长,有利于提高活性污泥中硝化菌的比例,为B段去除NH3-N创造了比较好的条件。

(6)A段在高负荷条件下运行,污泥产量大,其剩余污泥量较传统活性污泥工艺多10 %~15 %。

SBR 法

SBR反应器即序批式活性污泥生物反应器,是早期充排式反应器(Fill-Draw)的一种改进,比连续流活性污泥法出现得更早,但由于当时运行管理条件限制而被连续流系统取代。随着自动控制水平的提高,SBR法又引起人们的重视并对它进行更加深入的研究和改进,自1995年我国第一座SBR处理设施在上海吴淞肉联厂投产运行以来,SBR工艺在国内外已用于屠宰、含酚、啤酒、化工试剂、鱼品加工。制药等工业废水及城市生活污水。SBR工艺的曝气池,在流态上属完全混合,在有机物降解上,却是时间上的推流,有机物是随时间的推移儿被降解的。其流程由进水、反应、沉淀、出水和闲置等5个基本过程组成,从污水流入到闲置结束构成一个周期,在每个周期里上述过程都是在一个设有曝气或搅拌的反应器内依次进行。

7.jpg

好氧生物法一般用于处理低浓度有机废水,但近年来有人研制出一些高效的好氧生物处理工艺,可用于处理高浓度有机废水,如深井曝气、好氧流化床和好氧活性污泥法等。在特定条件下,如场地面积小,可以考虑应用深井曝气法;某些含有抑制厌氧菌物质的废水,可采用高效好氧处理装置

深井曝气法(DSP)

DSP是20世纪70年代初,英国皇家化学工业公司在进行利用好氧细菌生产单细胞蛋白的研究时派生出来的一种工艺。它改变了传统生化法处理污水时氧的转移率,增大氧气与液膜的接触面积,提高了氧的饱和浓度及其利用率,具有很好的处理效果。DSP法利用深井中的静水压力把氧的转移率从传统曝气法的5%-15%提高到60%-90%。动力效率很高,处理效果极好。此外,还具有产泥量少,不受气温影响,不产生污泥膨胀,占地面积小、效能高、能耗低、耐冲击负荷性能好、操作简单、易于管理、投资少等优点。因此,它广泛应用于现代化学合成工业的高浓度有机废水的治理,如塑料、合成纤维、合成橡胶、洗涤剂、染料、溶剂、涂料、农药、食品添加剂、药品等工业。

8.jpg

好氧生物流化床法(ABFB)

ABFB法是澳大利亚科学家于20世纪70年代初开发的工业废水生物处理工艺。这种工艺的特点是反应器内填料的表面积超过3 300 m2/m3,生物膜量可达10-40 g/L,比普通活性污泥法高1个数量级。因此,该工艺具有效能高、占地少、投资省等优点。但由于要使填料流化,必须进行出水循环,并保持反应器内具有一定的流速,从而增加了运行的复杂性。目前,国内利用ABFB处理高浓度有机废水尚处于实验阶段,工程应用并不多。

9.jpg

高浓度有机污水的处理技术正向高效、节能、环保的方向发展。好氧处理技术与厌氧处理技术的联合工艺将具有广阔的前景。

(1)改造常规的污水处理工艺。强化混凝处理过程,研制经济实用的强化混凝设备,是适合我国国情,高浓度难降解有机污水处理技术的重要发展方向之一。

(2)多种处理技术联合应用。如先用絮凝、微电解、电化学催化氧化等技术破坏水中难降解的有机物,提高有机污水的可生化性,再交叉耦合生化方法进行深度处理。

(3)发展具有高效能、多功能、设备小型化以及更便于操作的组合处理装置。另外还须推行清洁生产,让污染在生产过程中得到减少或消除。

(4)开发污水净化生物强化技术。即向系统中投加从自然界中筛选的优势种群或通过基因工程改良的能够快速“吃”污的高效降解菌,以强化高浓度有机污水的处理效果。


原标题:高浓度有机废水主要处理技术 看这篇汇总就够了!

 

 
推荐环保节能
点击排行
 
网站首页 | 关于我们 | 联系方式 | 使用协议 | 版权隐私 | 排名推广 | 广告服务 | 积分换礼 | 网站留言