当前位置: 首页 > 新能源资讯 > 综合小能源资讯 > 正文

【干货】锂电材料挡不住的脚步

放大字体 缩小字体 发布日期:2018-09-05 06:31:30   来源:新能源网  编辑:全球新能源网  浏览次数:599


(二)锂离子混合电容器

锂离子电池和电容器我们都不陌生,锂离子电池利用了正负极的氧化还原反应,驱动Li+反复在正负极晶格之间嵌入和脱出,从而达到储存和释放电能的目的。而电容器的工作原理与锂离子电池有这本质的区别,传统意义上的电容器中不发生氧化还原反应,而是借助双电层将阴阳离子分别吸附在正负极表面,从而达到储能的目的,由于这一过程中不存在氧化还原反应和离子嵌入等过程,电极的结构没有发生改变,因此电容器具有极佳的循环性能,一般可达几十万次,但是因为双电层储存的电荷数量非常有限,因此电容器的能量密度极低,无法作为储能器件使用。

近年来随着材料技术的不断发展,人们提出了一种能量密度“极高”的“超级电容器”概念,比能量可达5Wh/kg以上,远远超出了传统的电容器,超级电容器具有充电时间短、放电功率大,循环寿命好等优点,因此被给予了厚望。在上海世博会期间,使用超级电容器的公交车就在世博园内的世博大道运行,该公交车不需要长时间充电,只需要在每次出车前进行3-5min的快速充电,然后每隔3-4站,酌情进行30-50s的快速充电,这一过程完全可以在每站上下客的时间内完成,实现了随充随走,极大的提高了运行的便利性。

虽然超级电容器相比于传统的电容器比能量有了极大的提升,但是相比于锂离子电池,比能量仍然较低,如何将锂离子电池的高比能和超级电容器的长寿命、快速充放电相结合,成为了广大学者的研究热点,在这一背景下,锂离子电容器应运而生。一般来说,锂离子电容器一侧电极能够嵌入和脱出锂离子,另一侧电极能够吸附阴阳离子,这样即结合了锂离子电池高容量的特点,也结合了超级电容器快速充放电的特性,但是这一结构也存在着Li+在电极内扩散慢的问题,限制了混合锂离子电容器的性能发挥。为了克服这一问题人们从材料的选择和混合电容器的结构设计等方面都进行了众多的研究。

锂离子混合电容器常见的负极材料主要有硬碳、TiO2等能够嵌入Li+的材料,其中TiO2的Li+嵌入电压在1.5V(vs Li+/Li)左右,当与活性碳组成电容器后,能够恰好使得电容器的电压处于水溶液的稳定电化学窗口范围内,同时TiO2成本低,并具有优异的循环性能,非常适合作为锂离子电容器的负极使用。TiO2优异特性吸引了广大研究者的关注,但TiO2的应用还要克服TiO2材料电子电导率低和Li+扩散慢的问题。

为了克服Li+在TiO2材料中扩散缓慢的难题,重庆大学的Gang Tang等[1]设计了一款复合结构高性能锂离子电容器负极,该电极由氢处理纳米TiO2颗粒,导电聚合物和单壁碳纳米管组成。氢处理能够增加TiO2内部的氧缺陷,提高其储锂的特性,而导电聚合物能够不仅能够支撑电极的三维多孔结构,还能够为活性物质颗粒之间提供良好的导电连接,同时改善电极的离子和电子导电性。测试表明该负极比容量可达213mAh/g,当与活性碳组成混合锂离子电容器时,在4KW/kg的电流密度下,比能量可达31.3Wh/kg,在1.0-3.0V之间,循环3000次,容量保持率可达77.8%。

复合电极结构是克服TiO2电子电导率差和Li+扩散慢的有效方法,北京化工大学的Cheng Yang等[2]利用静电纺丝技术制备了TiO2@PCNFs复合结构纤维材料,Cheng Yang的方法是首先制备钛酸丁酯、PVP和正硅酸乙酯的混合溶液,然后进行静电纺丝,随后对纤维在800℃下进行碳化处理,获得含有TiO2和SiO2纳米颗粒的纳米碳纤维,最后利用NaOH溶液腐蚀掉SiO2,获得具有多孔结构的TiO2@PCNFs纳米纤维材料,通过调整正硅酸乙酯的数量可以对TiO2@PCNFs材料的孔隙率进行调整,从而显著的提高材料的能量密度和功率密度,经测试该材料与活性碳材料组成锂离子电容器后,在75W/kg的功率密度下,能量密度可达67.4Wh/kg,即便是在5KW/kg的功率密度下,该电容器的比能量仍然能够达到27.5Wh/kg,此外该锂离子电容器还展现出了卓越的循环性能,在10A/g的电流密度下,循环10,000次,容量保持率可达80.5%。

元素掺杂也是改善材料性能的常用方法,伦敦大学学院的Dustin Bauer等[3]利用连续水热法制备了Mo掺杂和Nb掺杂的TiO2材料,Mo掺杂和Ni掺杂显著改善了TiO2的容量和倍率性能,在180W/kg的功率密度下,Mo0.1Ti0.9O2/AC(活性碳)混合电容器的能量密度可达51KW/kg(0.5-3.0V),但是随着电流密度的增加,能量密度也在快速下降。而Nb0.25Ti0.75O2/AC表现出了更好的倍率性能,在180W/kg的功率密度下,比能量可达45Wh/kg,3200W/kg的功率密度下,比能量可达36Wh/kg。

从上面的分析我们可以看到虽然混合型的锂离子电容器相较于超级电容器而言,已经有了巨大的提升,但是相比于锂离子电池,仍然有很大的差距,因此人们尝试了多种手段在不损害混合型锂离子电容器功率性能和寿命的前提下,提升锂离子电容器的比能量。例如佛罗里达州立大学的Wanjun Cao等[4]从正极结构、负极嵌锂和不同种类的隔膜等方面进行了深入的研究,发现AC正极使用PTFE粘结剂时,相较于PVDF,能够显著的提升电容器的能量密度和功率密度,负极硬碳HC和惰性锂粉(SLMP)的比例为7:1时性能最好,隔膜方面纤维素基的TF40-30隔膜更加适合锂离子电容器。

针对锂离子电容器负极使用惰性金属锂粉(SLMP)对环境要求严格、安全性差等问题,美国陆军研究实验室的Sheng S. Zhang[5]尝试采用在正极添加富锂材料的方式,提供负极所需要的Li+,从而提高锂离子混合电容器的比能量。用于补充Li+的富锂材料需要满足下图要求,首先其脱锂电势不能高于活性碳AC的最高电势,其次其嵌锂电势要低于活性碳的最低电势(类型1)或者其容量不可逆(类型2),Sheng S. Zhang使用的是LiCuO2材料,其理论比容量为490mAh/g,实际充电容量342mAh/g,可逆容量仅为40mAh/g,非常适合作为Li+源材料使用。

锂离子混合电容器具有锂离子电池负极,超级电容器正极,负极常见的材料例如硬碳、TiO2能够提高很高的容量,而正极材料活性碳AC的比容量很低,这就极大的限制了锂离子混合电容器的比能量的提高,为了解决这一问题,同济大学的Jun-Sheng Zheng等[6]对锂离子混合电容器的正极结构进行了调整,在正极的一边仍然涂布活性碳,而另一边则涂布LiCoO2材料,该结构最大的优势是在较低的功率密度下(60W/kg),其表现的更像是锂离子电池,从而获得更高的能量密度(150Wh/kg),而在较大的倍率下放电时(1000W/kg),其中的电容器结构能够保证电池的功率性能,从而获得较高的能量密度(21Wh/kg),这中混合型电容器结构非常适合在一些需要大电流脉冲放电的领域应用,脉冲放电时由其中的电容器供电,放电结束后,和电容器并联的锂离子电池将为电容器充电,从而达到兼顾功率密度和能量密度的目的。

锂离子混合电容器的出现成功的将锂离子电池的高能量密度和超级电容器的高能量密度和长寿命特性结合在了一起,满足了我们对高比能和高比功率电池的需求,非常适合在电动汽车等领域应用。目前锂离子混合电容器的能量密度虽然远高于混合型电容器,但是仍然远远低于锂离子电池,还需要我们从结构设计和材料设计等方面进行研究,进一步提升锂离子混合电容器的性能,使之能够早日造福我们。

34
 
关键词: 材料 电池

[ 行业资讯搜索 ]  [ 打印本文 ]  [ 违规举报

猜你喜欢
0条 [查看全部]  相关评论
 
推荐图文
锂离子电池的种类 什么是燃气汽车
氢能燃料电池技术浅析 什么是核能发电
推荐行业资讯
点击排行
 
 
网站首页 | 联系我们 | 排名推广 | 广告服务 | 积分换礼 | 网站留言