当前位置: 首页 > 新能源资讯 > 综合小能源资讯 > 正文

基于AVR的锂电池智能充电器的设计与实现

放大字体 缩小字体 发布日期:2018-09-05 03:33:57   来源:新能源网  编辑:全球新能源网  浏览次数:490


  3.2控制电路

  单片机负责控制整个系统的运行,包括充电电流电压值的设定,电流电压的检测与调整,充放电状态的显示等。与专用充电控制芯片相比,单片机控制系统不仅不受电池组容量大小的阻将电流转换为电压进行的,因此其PWM控制调整过程与恒限制,还可通过软硬件配合实现更灵活的综合控制,也便于进一步的后续开发。

  系统控制选用Atmel公司的AVRATtiny261来实现,控制框图见图2。ATtiny261采用AVR RISC结构,其大部分指令执行时间仅为1个时钟周期.可达到接近1MIPS/MHZ的性能;11路lObitADC。且15对具有可编程增益的ADC差分通道,精度高达2.5mV的内置2.56V基准源,3个独立PWM发生器,片上温度传感器,足以满足设计需求。

基于AVR的锂电池智能充电器的设计与实现

图2 系统控制结构框图

  3.2.1志愿检测

  系统电压采样采用精密电阻分压方法,将测量电压范围转换成0-2.56V,然后通过1倍的差分ADC通道转换成数字信号,在充电过程中将测得的电压值与预先设定的值进行比较,再控制调整PWM占空比完成对充电电压的控制与调节。

  3.2.2电流检测

  在系统电流的榆测上,由于选用ATtiny261的ADC差分通道,这就要求其正端输入电压必须大予负端输入电压。困此,在电路设计上,通过串联在电流主回路中的高精度采样电阻RsenseB和RsenseA,经ADC2-ADCl和ADCl-ADC0两对32倍的ADC差分通道(参见图3),分别完成对充、放电电流的检测。可见,差分ADC的选用,既保证了电流采样的精准,又避免了因电路中引入差分远放所带来的功率损耗问题,很好的满足了系统性能与功耗两方面的要求,充分体现了ATtiny261的优势。

基于AVR的锂电池智能充电器的设计与实现

图3 电池保护电路

  3.2.3温度检测

  温度检测确保了安全充电步骤的执行。系统中使用ATtiny261的毖上湿度传感器,通过ADCIl进行温度检测。测量电压与温度基本成线性关系,约lmv/°C的精度可提供充分精度的温度测量。如欲获得更高精度的温度检测,可通过软件写入校准值的方法来实现。

  3.2.4 PWM控制

  设计中,在前述稳压管反馈控制的摹础上,在反馈环节中引入PWM的方法控制充电。其基本控制思想是利用单片机的PWM端口,在不改变PWM波周期的前提下,通过电流及电压的反馈,用软件的方法调整PWM占空比,从而使电流或电压按预定的充电流程进行。

3
 
关键词: 充电 电压

[ 行业资讯搜索 ]  [ 打印本文 ]  [ 违规举报

猜你喜欢
0条 [查看全部]  相关评论
 
推荐图文
锂离子电池的种类 什么是燃气汽车
氢能燃料电池技术浅析 什么是核能发电
推荐行业资讯
点击排行
 
 
网站首页 | 联系我们 | 排名推广 | 广告服务 | 积分换礼 | 网站留言