当前位置: 首页 > 专家说 > 生物质能 > 正文

急!!!生物仿生材料的论文、生态工程相关的论文

关注热度:113
相关推荐 你可能关注 点击排行 我要评论

【专家解说】:通过上课我再次对那些纳米技术有了一些心得了解,另外我通过网络和书籍的查阅更加清楚地了解到纳米此材料(NanoST)的定义:纳米(nm)和米、微米等单位一样,是一种长度单位,一纳米等于十的负九次方米,约比化学键长大一个数量级。纳米科技是研究由尺寸在0.1至100纳米之间的物质组成的体系的运动规律和相互作用以及可能的实际应用中的技术问题的科学技术。可衍生出纳米电子学、机械学、生物学、材料学加工学等。 纳米材料是指三维空间尺度至少有一维处于纳米量级(1-100nm)的材料,它是由尺寸介于原子、分子和宏观体系之间的纳米粒子所组成的新一代材料。由于其组成单元的尺度小,界面占用相当大的成分。因此,纳米材料具有多种特点,这就导致由纳米微粒构成的体系出现了不同于通常的大块宏观材料体系的许多特殊性质。纳米体系使人们认识自然又进入一个新的层次,它是联系原子、分子和宏观体系的中间环节,是人们过去从未探索过的新领域,实际上由纳米粒子组成的材料向宏观体系演变过程中,在结构上有序度的变化,在状态上的非平衡性质,使体系的性质产生很大的差别,对纳米材料的研究将使人们从微观到宏观的过渡有更深入的认识。通过上课我也了解了纳米材料的许多特性比如: 纳米尺度的生物大分子能导电、纳米微粒的抗菌作用等只有在纳米级时才可显现出来。 同时我也了解到纳米材料的独特特性, 在于它的小尺寸效应与界面效应以及纳米结构单元之间的交互作用。当粒子的尺寸减小到纳米量级,将导致声、光、电、磁、热性能呈现新的特性。比方说:被广泛研究的II-VI族半导体硫化镉,其吸收带边界和发光光谱的峰的位置会随着晶粒尺寸减小而显著蓝移。按照这一原理,可以通过控制晶粒尺寸来得到不同能隙的硫化镉,这将大大丰富材料的研究内容和可望得到新的用途。我们知道物质的种类是有限的,微米和纳米的硫化镉都是由硫和镉元素组成的,但通过控制制备条件,可以得到带隙和发光性质不同的材料。也就是说,通过纳米技术得到了全新的材料。纳米颗粒往往具有很大的比表面积,每克这种固体的比表面积能达到几百甚至上千平方米,这使得它们可作为高活性的吸附剂和催化剂,在氢气贮存、有机合成和环境保护等领域有着重要的应用前景。对纳米体材料,我们可以用“更轻、更高、更强”这六个字来概括。“更轻”是指借助于纳米材料和技术,我们可以制备体积更小性能不变甚至更好的器件,减小器件的体积,使其更轻盈。第一台计算机需要三间房子来存放,正是借助与微米级的半导体制造技术,才实现了其小型化,并普及了计算机。无论从能量和资源利用来看,这种“小型化”的效益都是十分惊人的。“更高”是指纳米材料可望有着更高的光、电、磁、热性能。“更强”是指纳米材料有着更强的力学性能(如强度和韧性等),对纳米陶瓷来说,纳米化可望解决陶瓷的脆性问题,并可能表现出与金属等材料类似的塑性。 当然任何的材料都在于它的应用。纳米陶瓷材料用于人工骨关节、牙齿修复、耳骨修复等,其强度、韧性、硬度以及超塑性都有显著提高。新型纳米抗炎敷料,表面结构发生根本性变化,面积显著增大,杀菌效果增加百倍以上。利用纳米技术的DNA复制与自我生长、自我制造机理,可研制出有生物相容性的各种人体器官和骨骼修复剂与自生长材料、人血代用品等。 可利用纳米薄层能分解有机物、抑制细菌滋生的自我清洁特性可制成各种无菌器械用于临床。在医疗保健领域,用掺入多种微量矿物质元素的微元化纤维及陶瓷纤维等纳米材料,可制成衣物、垫料等,有助于关节炎等病症的治疗、屏蔽电磁波能量,保障人体不受侵害。加入了纳米材料的食品可杀菌并提高胃肠吸收能力。纳米材料的应用前景是十分广阔的,如:纳米电子器件,医学和健康,航天、航空和空间探索,环境、资源和能量,生物技术等。我们知道基因DNA具有双螺旋结构,这种双螺旋结构的直径约为几十纳米。用合成的晶粒尺寸仅为几纳米的发光半导体晶粒,选择性的吸附或作用在不同的碱基对上,可以“照亮”DNA的结构,有点像黑暗中挂满了灯笼的宝塔,借助与发光的“灯笼”,我们不仅可以识别灯塔的外型,还可识别灯塔的结构。简而言之,这些纳米晶粒,在DNA分子上贴上了标签。 目前,我们应当避免纳米的庸俗化。尽管有科学工作者一直在研究纳米材料的应用问题,但很多技术仍难以直接造福于人类。2001年以来,国内也有一些纳米企业和纳米产品,如“纳米冰箱”,“纳米洗衣机”。这些产品中用到了一些“纳米粉体”,但冰箱和洗衣机的核心作用任何传统产品相同,“纳米粉体”赋于了它们一些新的功能,但并不是这类产品的核心技术。因此,这类产品并不能称为真正的“纳米产品”,是商家的销售手段和新卖点。现阶段纳米材料的应用主要集中在纳米粉体方面,属于纳米材料的起步阶段,应该指出这不过是纳米材料应用的初级阶段,可以说这并不是纳米材料的核心,更不能将“纳米粉体的应用”等同与纳米材料。 纳米技术目前从整体上看虽然仍然处于实验研究和小规模生产阶段,但从历史的角度看:上世纪70年代重视微米科技的国家如今都已成为发达国家。当今重视发展纳米技术的国家很可能在21世纪成为先进国家。纳米技术对我们既是严峻的挑战,又是难得的机遇。必须加倍重视纳米技术和纳米基础理论的研究,为我国在21世纪实现经济腾飞奠定坚实的基础。整个人类社会将因纳米技术的发展和商业化而产生根本性的变革。 我相信纳米材料在未来的一段时间里必将成为人类材料史上对人类影响最大的一种新型材料,同时纳米材料也必将给人类的为来带来诸多便利,为人类的未来做出其巨大的贡献。

进一步了解相关内容你可以在站内搜索以下相关问题

  • 求3000字论文,关于生命的启迪或是生物与仿生的,请大家帮帮忙...
  • 急需关于仿生技术或细菌真菌的利用或保护生物的多样性的生物...
  • 急需关于仿生技术或细菌真菌的利用或保护生物的多样性的生物...

进一步了解相关内容你可以在站内搜索以下相关关键词

生物仿生材料    生物材料与人体仿生    生物医用与仿生材料    生物仿生    生物仿生技术    海洋生物仿生设计    生物仿生烤瓷牙    海洋生物仿生    
 
关键词: 生物 材料

[ 专家说搜索 ]  [ 加入收藏 ]  [ 告诉好友 ]  [ 打印本文 ]  [ 违规举报 ]  [ 关闭窗口 ]
 
相关专家说推荐
 
0条 [查看全部]  相关评论
 
相关资讯
热门推荐
 
 
网站首页 | 联系我们 | 排名推广 | 广告服务 | 积分换礼 | 网站留言