当前位置: 首页 > 新能源汽车 > 行业动态 > 正文

锂离子电池正极材料生产技术的发展

放大字体 缩小字体 发布日期:2018-09-25 12:00:24   来源:新能源汽车网  编辑:全球新能源汽车网  浏览次数:663


2. 制备高性能正极材料的要求

随着人们对材料物理化学研究的不断深入和材料制备技术的不断发展,人们发现,高性能的正极材料需要从材料的晶胞结构、一次颗粒晶体结构、二次颗粒结构、材料表面化学四个方面进行剪裁,以及材料大规模生产工艺技术方面进行工艺过程优化,才可以使得材料表现出更为优异的性能,更好地满足锂离子电池产业对正极材料的各项要求。

清华大学核能与新能源技术研究院锂离子电池实验室从上个世纪的九十年代初开始了二次电池高性能电极材料的研发。在高活性、高密度球形氢氧化亚镍Ni(OH)2镍氢电池用正极材料及其制备技术的研发过程中,形成了以控制结晶为特色的电极材料制备新技术工艺[59-71]。该技术工艺容易实现对晶胞结构、一次颗粒晶体结构、二次颗粒结构以及材料表面化学四个层面的结构调控,优化正极材料的各项性能以满足电极及电池对正极材料的要求。上述四个层面对材料性能的贡献是不同的:

第一层面,晶胞结构,即组成晶体的基本单元晶胞结构,主要通过掺杂而实现调控,达到优化材料的能级结构/离子传输通道的目的,从而提升材料电子电导率/离子电导率或者结构稳定性,进而提升材料的倍率性能和循环性能等。

第二层面,一次颗粒的晶体形貌。通过控制合成条件改变晶体的优势生长方向、晶粒大小、晶粒堆积方式。这一层面的优化可以优化电化学活性/惰性界面的面积、应力释放路径、锂离子扩散路径,从而提升电池的倍率性能、循环稳定性和能量密度等。

第三层面,二次颗粒结构。二次颗粒是一次颗粒相互融合堆积形成的颗粒。可以通过合成条件改变一次颗粒的堆积密度、二次颗粒的形貌、二次颗粒的大小及分布。这一层面的优化可以获得最佳的材料加工性能、极片压实密度,颗粒力学强度,从而提升电池的能量密度等。

第四层面,材料的表面化学。主要指表面包覆和表面元素浓度的梯度化。材料表面化学的优化可以大幅度提升材料的性能。

在实践中,上述四个层面相互关联、互相影响。例如,很好的形貌控制非常有利于表面化学的改进。

本实验室在上世纪九十年代对镍氢电池正极材料球形氢氧化亚镍进行系统研发时所形成的学术成果[59-69],为随后研发高性能锂离子电池电极材料奠定了坚实的理论和实践基础,开创了崭新的研究领域[11,70,71]。

在电动车和储能领域,要求电池具有很好的一致性和可靠性。据此,对正极材料规模化生产的稳定性提出了新的要求,正极材料产业迫切需求先进的材料规模制备技术[72]。

3. 控制结晶/固相反应工艺制备高性能正极材料

2006年以前,已经实现大规模生产的锂离子电池正极材料只有钴酸锂LiCoO2和锰酸锂LiMn2O4,采用成熟的陶瓷工业合成技术--高温固相法, 基本工艺是将反应物混合后进行烧结。该技术工艺的优势是设备成熟、技术工艺简单,最大缺点是产物的粒径分布不易控制, 均匀性、一致性和重现性较差[73]。

本实验室基于高密度球形氢氧化亚镍的技术成果,从上世纪90年代末期开始,研发了独特的控制结晶/固相反应新工艺[8-11,70,71], 该新工艺以控制结晶制备前驱体为技术核心,从四个层面对材料结构其性能进行优化。由于该工艺技术所制备材料具有球形或类球形形貌、堆积密度高,加工性能好、可提高电池的能量密度,显示了优异的综合性能,控制结晶/固相反应工艺为今天产业界所普遍接受。

1999年,本实验室首次报道了以Co(OH)2为前驱体制备球形LiCoO2正极材料 [8]。由于Co(OH)2和LiCoO2的结构相似,因此固相反应的温度低、烧结时间短,可获得均匀无杂相的NaFeO2层状结构的LiCoO2 粉末。同时,可以借鉴优化Ni(OH)2的工艺技术来优化Co(OH)2前驱体,从而得到流动性好、分散性好、堆积密度高的LiCoO2粉体[9,10]。随后,这些学术思想被用来制备一系列的正极材料,逐步发展成为今天的锂电池正极材料的主要生产工艺路线,即控制结晶/固相反应工艺。

2001年,本实验室首次发表了以球形Ni0.8Co0.2(OH)2为前驱体制备高镍正极材料LiNi0.8Co0.2O2的文章[41-43],同时进行表面改性[44-46]和Al掺杂改性[58]。Al掺杂演变成为今天的NCA材料。

2003年,本实验室首次发表以控制结晶技术制备尖晶石锰酸锂的工艺技术,继而首次提出通过表面富钴的“梯度材料”来改善尖晶石锰酸锂的高温循环稳定性[12],并基于控制结晶技术对尖晶石锰酸锂进行了进一步的改性研究[13-22]。这些研究表明,控制结晶技术不仅在均质材料制备方面具有较好的可控性,在材料表面包覆、特别是梯度包覆方面也具有工艺简单、易于控制的优点。

磷酸铁锂因为本征电子和离子电导率较低,只有纳米化后才能获得可用的电化学性能,但纳米颗粒堆积和压实密度低,这严重影响了磷酸铁锂电池的能量密度。2005年,本实验室提出以控制结晶技术制备球形FePO4前驱体[11,23],然后混合锂源和碳源,通过碳热还原合成高性能高密度LiFePO4的合成路线[11,24-26]。其中液相法可以很好的控制前驱体的Fe:P比例,可同时实现纳米一次颗粒和高密度球性二次颗粒的调控[27-29],并同步实现导电碳在二次颗粒中的均匀复合,虽然仍然通过固相烧结获得最终的磷酸铁锂产品,但均匀、高密度、批次稳定、粒度可控、组成精确可控的前驱体使得磷酸铁锂正极材料的均匀性和批次稳定性大大提高、杂质含量显著降低。上述学术思想逐渐被产业界认可,成为了今天大规模生产LFP的基本工艺路线。

2005年开始,本实验室报道了采用控制结晶/固相反应技术制备高性能NMC333正极材料[11,49-51]。并进一步对NMC333正极材料进行了包覆、掺杂等的改性研究[52-57]。

目前动力锂离子电池产业所需要的主流正极材料均采用控制结晶/固相反应工艺进行生产。尤其是大规模储能及电动车电池用的磷酸铁锂材料和各种组成的三元材料的合成,控制结晶/固相反应工艺具有不可替代的优越性。其可根据不同电池的需求,针对性地对前驱体进行改性与调控。同时产品也容易实现良好的均匀性和一致性,这一点对动力电池的稳定生产、尤其是动力电池的一致性至关重要。

控制结晶/固相反应技术经过十多年的发展,目前已经成为了国际上正极材料行业的主流生产技术工艺。这是我国科学工作者对锂离子电池产业做出的重要贡献。

4. 锂离子电池材料的规模化生产技术

随着大规模储能和电动车的快速发展,对锂离子电池正极材料的产品质量提出了越来越严格的要求。为满足市场对正极材料的高品质要求,自动化、智能化的大规模生产技术和装备技术就显得越来越重要。

在过去的十五年里,控制结晶/固相反应技术工艺日臻完善。然而,我国还是一个发展中国家,大量设备陈旧、生产工艺僵化的现象普遍存在,尤其是中小企业。国家整体工业化的水平还处在工业2.0和工业3.0的阶段,距发达国家的工业4.0的信息化、智能化的工业生产技术水平还有一段距离,这已成为阻碍我国制造业效率和品质进一步提升的主要问题。这个现象也同样存在于锂离子电池正极材料生产企业中。因此我国锂离子电池正极材料的生产工艺、设备管理水平急需转型升级,利用信息技术提升、改善、重构生产要素,提高企业组织管理水平,创新生产方式,提升资产质量和服务功能,适应市场的迅速发展和变化。

2000年左右,锂离子电池正极材料的新建项目一般是200-500吨的产能规模。2010年左右,一般是2000吨的产能规模。目前新建项目一般是一期5000—2000吨,规划50000吨以上。随着产能规模的不断放大,对工厂的设计布局和运行管理提出了新的挑战。为了满足电动车和储能产业对电极材料的高品质和大规模的需求,逐步发展了基于粉体自动输送的信息化、自动化和智能化的大规模生产技术[72]。

目前国内部分企业已经开始逐步采用先进的大规模生产技术。主要包括粉体自动输送、自动计量、自动化生产与智能控制,信息化远程实时监控,以及先进的制造执行系统等。

5. 结束语

以控制结晶制备磷酸铁前驱体/碳热还原固相反应为基础的磷酸铁锂制备工艺已经被产业逐步接受,并成为目前的主流工艺路线。下一步溶剂热方法制备高性能磷酸铁锂有可能成为新的超大规模生产方法,以满足未来大规模固定储能的需求。

在三元材料中,NMC333的综合性能最好,NMC532的性价比较好,NMC811/NCA在4.2V的比容量最高。因此,这些材料在一定时期内,将得到较大的发展,以满足未来大规模移动储能(例如电动车)的需求。

锂离子电池正极材料的生产技术经历来二十多年的发展,其主流工艺逐步集中在以控制结晶/固相反应工艺为基础的技术路线。该技术路线以控制结晶制备前驱体为技术核心,可以在材料的四个层面对其性能进行优化。该技术路线所制备材料具有颗粒形貌易控制,均匀性、一致性和重现性好的特点。且材料的堆积密度高,可提高电池的能量密度。由于该技术路线所制备材料具有相对最好的综合性能,因此控制结晶/固相反应技术路线为今天产业界所普遍接受。

为了满足电动车和储能产业对电极材料的高品质和大规模的需求,基于工业4.0的概念,我国已经发展了包括粉体自动输送的信息化、自动化和智能化的大规模生产技术。

固定储能和移动储能产业的快速发展,拉动了锂离子电池正极材料的技术进步。在正极材料制备技术的发展过程中,以前侧重单元技术工艺的研发,主要通过材料的结构调控来优化材料加工性能和电化学性能。而未来的大规模智能制造,一方面仍然需要关注单元技术工艺的可规模性,更需要关注单元技术工艺之间的反馈与联动效率,从而提高大规模制造过程的能效,提高产品稳定性。在这一技术发展的早期阶段,我国科研工作者做出了不可或缺的创新性贡献。目前我国已经成为锂离子电池正极材料的最大生产国,占比超过50%。研发力量规模也是全球最大,我们相信在未来的大规模智能制造阶段,我国科学工作者在新工艺、新设备、智能化等方面也将做出重要贡献。

 
关键词: 材料 正极 制备


 
猜你喜欢
0条 [查看全部]  相关评论
 
推荐图文
【安全】燃气汽车加气站建设的安全要求 铅酸蓄电池智能充电器原理与维修方法
新型电动汽车锂电池管理系统的设计方案 如何看汽车电池热管理系统
推荐新能源汽车
热门排行
 
网站首页 | 关于我们 | 联系方式 | 使用协议 | 版权隐私 | 排名推广 | 广告服务 | 积分换礼 | 网站留言