当前位置: 首页 > 环保节能 > 环保节能 > 正文

高浓度有机废水主要处理技术 看这篇汇总就够了!

放大字体 缩小字体 发布日期:2019-09-19 09:07:36   浏览次数:211
核心提示:2019年09月19日关于高浓度有机废水主要处理技术 看这篇汇总就够了!的最新消息:水处理网讯:高浓度有机废水的性质和来源不一样,其治理技术也不一样。通常根据高浓度有机废水的性质和来源可以分为三大类:第一类为不含有害物质且易于生物降解的高浓度有机废水,如食品工业废


水处理网讯:高浓度有机废水的性质和来源不一样,其治理技术也不一样。通常根据高浓度有机废水的性质和来源可以分为三大类:第一类为不含有害物质且易于生物降解的高浓度有机废水,如食品工业废水;第二类为含有有害物质且易于生物降解的高浓度有机废水,如部分化学工业和制药业废水;第三类为含有有害物质且不易于生物降解的高浓度有机废水,如有机化学合成工业和农药废水。

本文汇总了国内外高浓度有机废水的主要处理技术,主要包括物化、化学、生物处理技术并分析了各种方法和工艺的优缺点及其研究现状。重点对生物处理技术中MBR、A-B工艺、UASB、SBR工艺进行重点研究、归纳总结其优缺点。

高浓度有机废水来源

高浓度有机废水一般是指由造纸、皮革及食品等行业排出的COD在2 000 mg/ L以上的废水。这些废水中含有大量的碳水化合物、脂肪、蛋白质、纤维素等有机物,如果直接排放,会造成严重污染。高浓度有机废水按其性质来源可分为三大类:

(1)易于生物降解的高浓度有机废水;

(2)有机物可以降解,但含有害物质的废水;

(3)难生物降解的和有害的高浓度有机废水。

高浓度有机废水水质特点

(1)有机物浓度高。COD一般在2 000 mg/L以上,有的甚至高达几万乃至几十万mg/L,相对而言,BOD较低,很多废水BOD与COD的比值小于0.3。

(2)成分复杂。含有毒性物质废水中有机物以芳香族化合物和杂环化合物居多,还多含有硫化物、氮化物、重金属和有毒有机物。

(3)色度高,有异味。有些废水散发出刺鼻恶臭,给周围环境造成不良影响。

(4)具有强酸强碱性。

高浓度有机废水危害

高浓度有机污水主要有以下3种危害:

①需氧性危害。由于生物降解作用,高浓度有机污水会使受纳水体缺氧甚至厌氧,多数水生物将死亡,从而产生恶臭,恶化水质和环境。

②感观性污染。高浓度有机污水不但使水体失去使用价值,更严重影响到水体附近人民的正常生活。

③致毒性危害。高浓度有机污水中含有大量有毒有机物,会在水体、土壤等自然环境中不断累积、储存,最后进入人体,从而危害人体健康。

高浓度有机废水处理技术

高浓度有机废水处理技术粗略分为3类:物化处理技术、化学处理技术以及生物处理技术。

1、 物化处理技术

物化法常作为一种预处理的手段应用于有机废水处理,预处理的目的是通过回收废水中的有用成分,或对一些难生物降解物进行处理,从而达到去除有机物,提高生化性,降低生化处理负荷,提高处理效率。一般常用的物化法有萃取法、吸附法、浓缩法、超声波降解法等。

萃取法

在众多的预处理方法中,萃取法具有效率高、操作简单、投资较少等特点。特别是基于可逆络合反应的萃取分离方法,对极性有机稀溶液的分离具有高效性和高选择性,在难降解有机废水的处理方面具有广阔的应用前景。

溶剂萃取法利用难溶或不溶于水的有机溶剂与废水接触,萃取废水中的非极性有机物,再对负载后的萃取剂进一步处理。近年来为了避免有机溶剂对环境的污染,又开发了超临界二氧化碳萃取。该法简单易行,适于处理有回收价值的有机物,但只能用于非极性有机物,被萃取的有机物和萃取后的废水需要进一步处理,有机溶剂还可能造成二次污染。萃取只是一个污染物的物理转移过程,而非真正的降解。

由清华大学开发的萃取一反萃取体系,可以应用于多种染料与中间体废母液资源回收,对染料中间体的回收率达90%以上,脱色效果也达到同样水平,正在逐步推广于染料废水的治理工程中。

吸附法

吸附剂的种类很多,有活性炭、大孔树脂、活性白土、硅藻土等。

在有机废水中常用的吸附剂有活性炭和大孔树脂。虽然活性炭具有较高的吸附性,但由于再生困难、费用高而在国内较少使用。例如将活性炭投加到难降解染料废水的试验容器中,当活性炭的投加浓度为200mg/L时,色度的去除率为77%;而投加质量浓度增加到400mg/L时,色度的去除率达到86%。

浓缩法

浓缩法是利用某些污染物溶解度较小的特点,将大部分水蒸发使污染物浓缩并分离析出的方法。浓缩法操作简单,工艺成熟,并能实现有用物质的部分回收,适合于处理高浓度含盐有机废水。该法的缺点是能耗高,如有废热可用或降低能耗,则该法是可行的。

超声波降解

采用超声波降解水体中有机污染物,尤其是难降解有机污染物,是20世纪90年代兴起的新型水污染控制技术。该技术利用超声辐射产生的空化效应,将水中的难降解有机污染物分解为环境可以接受的小分子物质,不仅操作简便、降解速度快,还可以单独或与其它水处理技术联合使用,是一种极具产业前景的清洁净化方法。它集高级氧化技术、焚烧、超临界水氧化等多种水处理技术的特点于一身,具有反应条件温和、速度快、适用范围广等特点,可以单独或与其它技术联合使用,具有很大的发展潜力。超声波能在水中引起空化,产生约4 000 K和100 MPa的瞬间局部高温高压环境(热点) ,同时以约110m/ s的速度产生具有强烈冲击力的微射流和冲击波。水分子在热点达到超临界状态,并分解成羟基自由基、超氧基等,羟基自由基是目前所发现的最强的氧化剂。有机物在热点发生化学键断裂、水相燃烧、高温分解、超临界水氧化、自由基氧化等反应。这些效应加上声场中的质点振动、次级衍生波等为有机物提供了其他方法难以达到的多种降解途径。

2 、化学处理技术

化学处理技术是应用化学原理和化学作用将废水中的污染物成分转化为无害物质,使废水得到净化的方法。化学氧化法分为两大类,一类是在常温常压下利用强氧化剂(如过氧化氢、高锰酸钾、次氯酸盐、臭氧等)将废水中的有机物氧化成二氧化碳和水;另一类是在高温高压下分解废水中有机物,包括超临界水氧化和湿空气氧化工艺,所用的氧化剂通常为氧气或过氧化氢,一般采用催化剂降低反应条件,加快反应速率。化学氧化法反应速度快、控制简单,但成本较高,通常难以将难降解的有机物一步氧化到无机物质,而且目前对中间产物的控制的研究较少。该技术也常常作为生化处理的预处理方法使用。其主要的方法有焚烧法、Fenton氧化法、臭氧氧化法、电化学氧化法等。

焚烧法

焚烧法利用燃料油、煤等助燃剂将有机废水单独或者和其他废物混合燃烧,焚烧炉可采用各种炉型。效率高,速度快,可以一步将有害废水中有机物彻底转化为二氧化碳和水。但设备投资大,处理成本高,除某些特殊废水(如医院废水)以外难以采用。

Fenton氧化法

Fenton试剂具有很强的氧化能力,因此Fen2ton氧化法在处理废水有机物过程中发挥了巨大的作用。但由于体系中含有大量的Fe2+离子,H2O2的利用率不高,使有机物降解不完全。后来,人们对传统的Fenton氧化法进行了改进。如光助反应就是在反应体系中辅以紫外线和可见光,在低浓度亚铁离子、理论双氧水加入量、紫外线和可见光的汞灯的照射下,反应0. 5 h ,溶解性有机碳去除率高达90 %。郁志勇等用UV +Fenton法对氯酚混合液进行处理,在1 h内COD去除率达到83.2 %。

臭氧氧化法

臭氧在水处理方面具有氧化能力强,反应速度快,不产生污泥,无二次污染等特点,在去除合成洗涤剂以及降低水中的BOD、COD等方面都具有特殊的效果。臭氧对难降解有机物的氧化通常是使其环状分子的部分环或长链分子部分断裂,从而使大分子物质变成小分子物质,生成易于生化降解的物质,提高废水的可生化性。臭氧氧化技术在难生物降解有机废水处理过程中常作为预处理。研究发现,臭氧氧化法对多数染料能取得很好的脱色效果,但对硫化、还原、涂料等不溶于水的染料脱色效果较差。

电化学氧化法

电化学氧化又称电化学燃烧,它是在电极表面的电氧化作用下或由电场作用而产生的自由基作用下使有机物氧化。电化学氧化分为直接电化学氧化和间接电化学氧化。直接电化学氧化是使难降解有机物在电极表面发生氧化还原反应。目前,已证实对氯苯酚、五氯化酚均可在阳极上彻底分解。Hwang B J等报道了电化学处理含氯有机物的有效性,并成功地利用PbO2/聚吡咯复合电极去除废水中的氯离子。阴极还原过程已被用于一氯乙烷、三氯乙烷和芳香氯化物等的脱氯处理。间接电化学氧化就是利用电化学反应产生氧化剂或还原剂使污染物降解的一种方法。据报道,采用电解生成次氯酸盐氧化剂,可氧化去除氨氮及难降解的有机污染物。

3、生物处理技术

生物处理是废水净化的主要工艺,主要用于处理农药、印染、制药等行业的有机废水。生物处理法是利用微生物的代谢作用来分解、转化水体中的有毒有害化学物质和其它各种超标组分的生物技术,降解作用的场所主要是含微生物的活性污泥、生物膜及其相应的反应器,由此诞生了各类生物处理方法和技术。微生物法不仅经济、安全,而且处理的污染物阈值低、残留少、无二次污染,有较好的应用前景。根据反应条件的不同,微生物处理法可分为好氧生物处理和厌氧生物处理两大类。

好氧活性污泥法

在污水处理中,活性污泥法是应用最广的技术之一,它是自然界水体自净的人工模拟,是对水自净作用的强化,利用悬浮生长的微生物絮凝体(Floc)处理有机污水。活性泥法自1914年在英国曼彻斯特试验厂开创以来,已有90多年的历史,随着在实际生产上的广泛应用和技术上的不断革新改进,特别是近几十年来,在对其生物反应和净化机理进行深入研究探讨的基础上,活性污泥法在反应动力学以及在工艺方面都得到长足发展,出现了多种能够适应各种条件的工艺流程。当前,活性污泥法已成为各类有机污水的主体处理技术。

根据各种不同运行方式的工艺特征与应用条件可将好氧活性污泥法分为:普通活性污泥法(CAS)、减量曝气活性污泥法、分段进水活性污泥法(SFAS)、吸附—再生活性污泥法(CSAS)、完全混合活性污泥法(CMAS)、高负荷活性污泥法、纯氧曝气活性污泥法(HPOAS)。以上这些污水处理方法都是对传统活性污泥法在使有机负荷及需氧量提到均衡,提高曝气池对水质、水量、冲击负荷的适应能力,减少污泥产生,缩短曝气时间,提高氧向混合液中的传递能力及利用率,减少污泥膨胀现象发生等方面进行的改进,改进的同时又不可避免地出现处理效果差等缺点,尤其是对于高浓度有机污水,更具有难处理性。

好氧生物膜法

好氧生物膜法是与活性污泥法并列的一种污水好氧生物处理法。这种方法的实质是使细菌、真菌、原生动物、后生动物等微生物附着在滤料或某些载体上生长繁育,并在其上形成膜状生物污泥———生物膜(Biofilm)。

与传统法处理污水相比,膜生物反应器具有以下几个方面的特征:

①出水水质好 用超微滤膜组件取代二次沉淀池可以使生物反应器获得比普通活性污泥法更高的生物浓度,提高了生物降解能力,处理效果好;同时膜分离后出水质量高,当处理对象为生活污水时,可满足建设部生活回用水水质标准C(J25.1一89)。

②工艺参数易于控制 膜生物反应器内可以实现STR和HTR的完全分离。通过控制较长的STR,使世代时间较长的硝化菌得以富集,提高硝化效果;同时膜分离也使废水中那些大分子、颗粒状难降解的成分在有限体积的生物反应器中有足够的停留时间,从而达到较高去除率。

③设备紧凑,占地少 。由于生物反应器内污泥浓度高,容积负荷可大大提高,生物反应器体积大大减小;从形式上看,一体式膜生物反应器可使设备更加紧凑。

④污泥产率低同传统活性污泥法相比,膜生物反应器的污泥产率很低,如下表:

1.jpg

⑤抗冲击负荷能力强 膜生物反应器中维持着高浓度的MLSS,使它比传统生物法具有高得多的抗冲击负荷能力。

⑥易于自动控制管理 膜分离单元不受污泥膨胀等因素的影响,易于设计成自动控制系统,便于管理。

通常提到的膜生物反应器,实际上是三类反应器的总称,它们分别是(1)膜一曝气生物反应器(MABR),(2)萃取膜生物反应器E(EMBR),(3)膜分离生物反应器(BSMBR,简称MBR)。

(1)膜-曝气生物反应器

无泡曝气MBR最早见于Co.etP等于1988年的报道。它采用透气性致密膜(如硅橡胶膜)或微孔膜(如疏水性聚合膜),以板式或中空纤维式组件,在保持气体分压低于泡点b(ubblepoin)t的情况下,可实现向生物反应器的无泡曝气。由于传递的气体含在膜系统中,因此提高了接触时间,极大地提高了传氧效率。同时由于气液两相被膜分开,有利于曝气工艺的更好控制,有效地将曝气和混合功能分开。因为供氧面积一定,所以该工艺不受传统曝气系统中气泡大小及其停留时间等因素的影响。

(2)萃取膜生物反应器

萃取MBR是结合膜萃取和生物降解,利用膜将有毒工业废水中有毒的、溶解性差的优先污染物从废水中萃取出来,然后用专性菌对其进行单独的生化降解,从而使专性菌不受废水中离子强度和pH值的影响,生物反应器的功能得到优化。目前膜一曝气生物反应器和萃取膜生物反应器还处在实验室阶段,尚无实际的工程应用。

2.jpg

(3)膜分离生物反应器

膜分离生物反应器中的膜组件相当于传统生物处理系统中的二沉池,利用膜组件进行固液分离,截流的污泥回流至生物反应器中,透过水外排。按膜组件和生物反应器的相对位置,膜分离生物反应器又可以分为一体式膜生物反应器、分置式膜生物反应器、复合式膜生物反应器三种。

在分置式MBR中,生物反应器的混合液由泵增压后进入膜组件,在压力作用下膜过滤液成为系统处理出水,活性污泥、大分子物质等则被膜截留,并回流到生物反应器内。分置式MBR通过料液循环错流运行,其特点是:运行稳定可靠,操作管理容易,易于膜的清洗、更换及增设。但为了减少污染物在膜面的沉积,由循环泵提供的料液流速很高,为此动力消耗较高。

一体式MBR根据生物处理的工艺要求,可分为两种组成形式:第一种有两个生物反应器,其中一个为硝化池,另一个为反硝化池。膜组件浸没于硝化反应器中,两池之间通过泵来更新要过滤的混合液。第二种组合最简单,直接将膜组件置于生物反应器内,通过真空泵或其它类型的泵抽吸,得到过滤液。为减少膜面污染,延长运行周期,一般泵的抽吸是间断运行的。

3.jpg

 

 
推荐环保节能
点击排行
 
网站首页 | 关于我们 | 联系方式 | 使用协议 | 版权隐私 | 排名推广 | 广告服务 | 积分换礼 | 网站留言